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Introduction

▶ Two very common tasks in modern data analysis are clustering [Ingrassia et al.,
2022, Sedghi et al., 2024, Diday and Simon, 1980, Jain et al., 1999, Xu and
Wunsch, 2005, Jain, 2010] and regression [Speller et al., 2023, Kalogridis, 2024]

▶ Clustering aims to organize a set of observations (individuals, objects, images,
pixels, etc.) into groups in such a way that observations belonging to the same
group present a high degree of similarity. In contrast, observations belonging to
different groups present a high degree of dissimilarity

▶ Regression methods aim to numerically estimate how a response variable (Y )
and a set of explanatory variables (X1, . . . ,Xp) are related through a mathematical
equation



Introduction

▶ Clusterwise linear regression (CLR) [Späth, 1979, 1981, 1982] is a technique that
simultaneously obtains a partition of a complete data set in a certain number of
groups and estimates the regression coefficients for each group

▶ This work proposes a flexible clusterwise method to predict a response variable
from a set of covariates assuming that the population under study is not
homogeneous for the underlying model

▶ The proposed approach, called the Flexible Prototypes Clusterwise Predictive
Method (FlexPCP), aims to segment the data into homogeneous clusters so that
each cluster is represented by a predictive model



Introduction

▶ The predictive method that represents each cluster is chosen dynamically in a
user-defined list of methods/models/algorithms

▶ The flexibility of the new method relies on the fact that any predictive statistical
model or predictive machine learning algorithm can be considered

▶ This allow us to find the best relationship between the response variable and the
covariates in different clusters (subsets) and improves the predictiveness of the
response variable by the use of a mixture of models

▶ Experiments on real-world as well as synthetic data sets show that the proposed
FlexPCP method outperforms its well-established counterpart, the clusterwise
linear regression method, in a wide range of situations



Introduction

▶ So far, the methods in the literature consider the same model (e.g. linear
regression model and its variants or the non-linear regression model or SVMs,
etc.) to describe the relationship between the response variable and a set of
predictor variables in all clusters

▶ Despite its wide applicability, the CLR method is not able to properly handle
non-linear data

▶ At the same time, it is challenging to define which non-linear function or machine
learning algorithm describes the relationship between the response variable and a
set of predictor variables for all clusters

▶ Moreover, it is too restrictive to assume the same regression method or ML
algorithm in all the clusters, assuming a common type of relationship, e.g., SVMs
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Clusterwise Linear Regression

▶ The CLR method is a combination of the dynamic clustering algorithm [Diday and
Simon, 1980] and the linear regression method

▶ It delivers a partition P1, . . . ,PK of a set of examples E into a specified number of
clusters K along with K prototypes represented by linear regression models

▶ For each cluster Pk , let nk = |Pk | and let eil ∈ Pk (1 ≤ l ≤ nk) be described by
the response variables Yk and the respective set of covariates
X1(k),X2(k), . . . ,Xp(k) (k = 1, . . . ,K )

▶ It is assumed that the relationship of the response variable Y with the covariates
Xj (1 ≤ j ≤ p) is expressed as:

yil(k) = β0(k) +

p∑
j=1

βj(k)xil j + ϵil(k). (1)



Clusterwise Linear Regression

▶ The local optimization of a suitable objective function delivers the clusters
P1,P2, . . . ,PK and the respective K prototypes (K linear regression models)

▶ The total within-cluster sum-of-squares deviations is computed by the following
objective function:

SCLR =
K∑

k=1

∑
eil ∈Pk

(ϵil(k))
2 =

K∑
k=1

∑
eil ∈Pk

yil(k) −

β0(k) +

p∑
j=1

βj(k)xil j

2

=
K∑

k=1

[(
y(k) − X(k)β(k)

)⊤ (
y(k) − X(k)β(k)

)]
, (2)



Clusterwise Linear Regression

▶ where:

X(k)
(nk×(p+1))

=

1 xi11 . . . xi1p
...

...
. . .

...
1 xink 1 . . . xink p

 ,

β(k)
((p+1)×1)

=

β0(k)
...

βp(k)

 , y(k)
(nk×1)

=

 yi1
...

yink

 .

▶ Starting from an initial solution (either random or user-provided), the algorithm
alternates between two steps: the fitting step, which determines the cluster
prototypes (K linear regression models) and the assignment step, which produces
the partition. This process continues until the convergence is achieved, meaning
there are no further changes in the partition P1, . . . ,PK .



Clusterwise Linear Regression

Step 1: best-fitting (prototypes update)
We have that the partition of E in K clusters is fixed. To estimate the coefficient vectors
β(k)(k = 1, . . . ,K ) that minimize SCLR , we differenciate the equation (2) with respect
to the coefficient vector and set it equal to zero. If the model matrices X(k)
(k = 1, . . . ,K ) have full rank, the least squares estimator of β(k) is the solution of the
system with (p + 1) normal equations, given by:

β̂(k) =
(

X⊤
(k)X(k)

)−1
X⊤
(k)y(k). (3)



Clusterwise Linear Regression

Step 2: best assignment
Now, the estimated coefficient vectors β̂(k) (k = 1, . . . ,K ) are kept fixed and the
optimal clusters Pk which minimize the criterion SCLR , are obtained according to the
following assignment rule:

Pk =

{
ei ∈ E :

(
ϵi(k)

)2
=

K
min
h=1

(
ϵi(h)

)2
}
. (4)

Therefore, the example ei is assigned to cluster Pk if the squared error is minimal for
this cluster when compared to the other squared errors for the observation ei when
computed by the linear models of the other K − 1 clusters. That is, the observation ei

(i = 1, . . . , n) will be assigned to the cluster Pk that minimizes the squared error.



FlexPCP: A Clusterwise Predictive Method
with Flexible Prototypes

▶ Let H = {f1, . . . , fH} be a set of machine learning algorithms and/or statistical
models like Support Vector Regression (SVR), Generalized Linear Models (GLM),
K -NN Regression, Robust Regression, Kernel Regression, Gradient Boosting,
etc.

▶ Consider the partition P = (P1, . . . ,PK ) of E into K clusters and, for each cluster
Pk , (k = 1, . . . ,K ), let nk = |Pk | and let eil ∈ Pk (1 ≤ l ≤ nk) be described by a
response variable Yk and their respective set of explanatory variables
X1(k),X2(k), . . . ,Xp(k) (k = 1, . . . ,K )



FlexPCP: A Clusterwise Predictive Method
with Flexible Prototypes

▶ We assume that each cluster k (k = 1, . . . ,K ) presents the following relationship
between the response variable Y and a set of covariates X1,X2, . . . ,Xp:

yil(k) = f(k)
(
xil ,β(k)

)
+ ϵil(k), (5)

where f(k) ∈ H and β(k) is the vector of coefficients if a parametric model is
selected as the best one for a given cluster k . A non-parametric model fk(x) with
M hyperparameters can be also considered for the cluster k without loss of
generalization



FlexPCP: A Clusterwise Predictive Method
with Flexible Prototypes

▶ The K clusters and their respective K models (flexible prototypes) are obtained by
a local iterative optimization process of the cost function that represents the total
within cluster sum-of-squares of errors, which is expressed as:

SFlexPCP =
K∑

k=1

∑
eil ∈Pk

ϵ2
il(k) =

K∑
k=1

∑
eil ∈Pk

[
yil(k) − f(k)

(
xil ,β(k)

)]2
. (6)

▶ From an initial (random or user-provided) solution, the algorithm alternates
between the fitting step, which delivers the best K models (the flexible
prototypes), and the assignment step, which provides the partition P1, . . . ,PK ,
until convergence, when there are no more assignment changes of objects into
clusters



FlexPCP: A Clusterwise Predictive Method
with Flexible Prototypes

Step 1: best-fitting (prototypes update)
The partition of E in K clusters is kept fixed. Then, the algorithm finds the best set of K
models f(k) ∈ H that minimizes the objective function SFlexPCP :

f(k)h =
K∑

k=1

min
1≤h≤H

fh, wehre fh =
∑

eil ∈Pk

[
yil(k) − f(k)h

(
xil , β̂(k)

)]2
. (7)

As the objective function is additive in K , the solution of the expression (7) represents
a local optimization of each cluster by applying the set of models belongs to
H = {f1, . . . , fH} and selecting the model f(k) that presented the minimal
sum-of-squares of errors within the cluster k (k = 1, . . . ,K )



FlexPCP: A Clusterwise Predictive Method
with Flexible Prototypes

Step 2: best assignment
Now, the models f(k)(k = 1, . . . ,K ) are kept fixed. The optimal clusters Pk which
minimize the criterion SFlexPCP , are obtained according to the following assignment
rule:

Pk =

{
ei ∈ E :

(
ϵi(k)

)2
=

K
min
h=1

(
ϵi(h)

)2
}
. (8)

Thus, the example ei will be allocated to the cluster Pk if the squared error is minimal
for Pk , in comparison with the squared errors obtained by the prototype models of the
remaining K − 1 clusters for that same example ei



Numerical Experiments

▶ Simulated as well as real data sets
▶ The methods were evaluated in terms of the root mean square error (RMSE)
▶ For the simulated scenarios, a Wilcoxon non-parametric test was used to

compare the approaches after a Monte Carlo simulation with 500 replicates
▶ We considered 20 different models into the set H of available models based on 6

different techniques: Generalized Linear Models (GLM), Support Vector
Regression (SVR), Generalized Additive Models (GAM), K -NN Regression,
Conditional Inference Trees and Robust Regression

▶ The flexibility of the FlexPCP method allows considering different techniques for
the problem (parametric, nonparametric, robust, semiparametric and machine
learning methods)



Numerical Experiments: simulated data
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Numerical Experiments: simulated data

Table: Comparison between the methods FlexPCP and CLR, by scenario. Mean and standard
deviation (in brackets) for the RMSE. p-value for the Wilcoxon nonparametric test

Method
Scenario

1 2 3 4 5 6

FlexPCP
5.0242 3.5390 10.0416 0.5605 0.1762 0.0480

(0.4584) (0.3021) (1.0839) (0.0968) (0.0411) (0.0060)

CLR
7.7166 10.8390 36.2151 0.9350 0.3176 0.0949

(0.3880) (0.5257) (1.3307) (0.0455) (0.0383) (0.0055)

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001



Numerical Experiments: real data

▶ The FlexPCP method was compared to the CLR method as well as to the
independent run of the K -means algorithm followed by OLS fit for each cluster
(OLS-KM) and the K -means method followed by the fit of the best one among the
H models (BF-KM)

▶ For the sake of simplicity, the prior information about K is obtained using the
K -means method. We consider a grid of values between 2 and

√
n and the

elbow’s method was used to define the number of clusters K for each data set
▶ The methods were evaluated based on the predictive performance for unseen

instances, according to the root mean square error (RMSE) in independent test
data sets, under a 10-fold cross-validation scheme.



Numerical Experiments: real data

Table: Description of the real data sets according to sample size and number of explanatory
variables (p)

Data Set Sample size p Description

Energy Efficiency 768 7 Heating/cooling load and requirements of build-
ings as a function of building parameters

Auto MPG 398 6 Predict the fuel-efficiency base on car features

Liver Disorders 345 5 Predict the amount of alcoholic beverages drunk
per day based on blood test information

Real Estate Valuation 414 6 The aim is to predict the household price based
on some features



Numerical Experiments: real data

Table: Description of the real data sets according to sample size and number of explanatory
variables (p)

Data Set Sample size p Description

Blood Transfusion Service 748 4 Predict the time to return to the blood trans-
fusion service centre

Concrete 1030 8 Predict the concrete compressive strength
for a given specification mixture

Bike Sharing 731 7 Predict the daily number of bike rentals
based on weather conditions

Abalone 4177 6 Predict the weight based on physical mea-
surements and the number of rings



Numerical Experiments: real data

Table: Comparative performance between the methods by real data sets. Values of the
objective function (S) and the best-fitted models, by approach

Data set Method S Best model (per cluster)

Energy
Efficiency
(K = 3)

OLS-KM 2.917 3 Linear models
BF-KM 0.881 SVM(a,ν), GAM, GAM
CLR 0.319 3 Linear models
FlexPCP 0.205 GAM, GAM, GAM

Auto MPG
(K = 4)

OLS-KM 408,252.00 4 Linear models
BF-KM 240,561.50 SVM(a,ν), SVM(a,ε), SVM(a,ν), GAM
CLR 41,684.65 4 Linear models
FlexPCP 31,807.53 SVM(a,ν), GAM, SVM(a,ν), RR



Numerical Experiments: real data

Table: Comparative performance between the methods by real data sets. Values of the
objective function (S) and the best-fitted models, by approach

Data set Method S Best model (per cluster)

Liver
Disorders
(K = 4)

OLS-KM 533.379 4 Linear models
BF-KM 348.076 SVM(a,ν), SVM(a,ε), Ctree, SVM(a,ν)

CLR 253.850 4 Linear models
FlexPCP 236.804 SVM(b,ε), SVM(b,ε),SVM(a,ε), SVM(a,ε)

Real Estate
Valuation
(K = 4)

OLS-KM 8,448.040 4 Linear models
BF-KM 4,645.808 SVM(b,ν), SVM(a,ε), SVM(a,ε), SVM(a,ε)

CLR 3,745.922 4 Linear models
FlexPCP 2,033.518 GAM, CTREE, SVM(a,ν), GAM



Numerical Experiments: real data

Table: Comparative performance between the methods by real data sets. Values of the
objective function (S) and the best-fitted models, by approach

Data set Method S Best model (per cluster)

Blood
Transfusion

Service
(K = 4)

OLS-KM 7,366.938 4 Linear models
BF-KM 2,408.565 4 GAM
CLR 1,712.776 4 Linear models
FlexPCP 1,578.459 4 GAM

Concrete
(K = 4)

OLS-KM 20,838.700 4 Linear models
BF-KM 11,265.06 GAM, SVM(a,ε), SVM(a,ν), GAM
CLR 8,306.293 4 Linear models
FlexPCP 5,953.834 4 SVM(a,ν)



Numerical Experiments: real data

Table: Comparative performance between the methods by real data sets. Values of the
objective function (S) and the best-fitted models, by approach

Data set Method S Best model (per cluster)

Bike
Sharing
(K = 4)

OLS-KM 161,852,597 4 Linear models
BF-KM 116,318,303 SVM(a,ε), SVM(a,ε), SVM(a,ε), GAM
CLR 71,095,420 4 Linear models
FlexPCP 35,886,294 4 SVM(a,ν)

Abalone
(K = 4)

OLS-KM 8.720 4 Linear models
BF-KM 7.349 SVM(a,ε), SVM(a,ν), SVM(a,ε), RR
CLR 1.467 4 Linear models
FlexPCP 1.497 SVM(a,ν), GAM, GAM, SVM(a,ν)



Numerical Experiments: real data

(a) Energy Efficiency (b) Auto MPG

Figure: Boxplots of RMSE across the 10 folds of cross-validation on each data set



Numerical Experiments: real data

(c) Liver Disorders (d) Real Estate Valuation

Figure: Boxplots of RMSE across the 10 folds of cross-validation on each data set



Numerical Experiments: real data

(e) Blood Transfusion Service (f) Concrete

Figure: Boxplots of RMSE across the 10 folds of cross-validation on each data set



Numerical Experiments: real data

(g) Bike Sharing (h) Abalone

Figure: Boxplots of RMSE across the 10 folds of cross-validation on each data set



Numerical Experiments: real data

Table: Predictive performance overall rank for the clusterwise methods and combined
approaches in the real data sets

Method
Data set Cumulative

ranking
Energy

Efficiency
Auto
MPG

Liver
Disorders

Real Estate
Valuation

Blood
Transfusion

Concrete
Bike

Sharing
Abalone

OLS-KM 4 3 2 3 4 4 4 1 25
BF-KM 2 4 1 4 3 3 3 4 24
CLR 3 2 3 2 2 2 2 2 18

FlexPCP 1 1 4 1 1 1 1 3 13



Numerical Experiments: real data

Figure: Cumulative ranking of the models according to the assignment strategy



Conclusion

▶ We proposed FlexPCP: a new clusterwise method allowing to consider a set of
different statistical models and/or machine learning algorithms into a set of K
homogeneous groups

▶ The FlecPCP method, with 20 different models representing 6 different
techniques, outperformed the CLR method in all considered simulated scenarios

▶ The results on real data demonstrated that the FlexPCP method achieved better
performance in comparison with the CLR method and two naive approaches
according to the value of the objective function

▶ Regarding the predictive performance, the FlexPCP method showed better results
compared to the CLR method and the OLS-KM and BF-KM approaches
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